116 research outputs found

    Quarnet Inference Rules for Level-1 Networks

    Get PDF
    An important problem in phylogenetics is the construction of phylogenetic trees. One way to approach this problem, known as the supertree method, involves inferring a phylogenetic tree with leaves consisting of a set X of species from a collection of trees, each having leaf-set some subset of X. In the 1980s, Colonius and Schulze gave certain inference rules for deciding when a collection of 4-leaved trees, one for each 4-element subset of X, can be simultaneously displayed by a single supertree with leaf-set X. Recently, it has become of interest to extend this and related results to phylogenetic networks. These are a generalization of phylogenetic trees which can be used to represent reticulate evolution (where species can come together to form a new species). It has recently been shown that a certain type of phylogenetic network, called a (unrooted) level-1 network, can essentially be constructed from 4-leaved trees. However, the problem of providing appropriate inference rules for such networks remains unresolved. Here, we show that by considering 4-leaved networks, called quarnets, as opposed to 4-leaved trees, it is possible to provide such rules. In particular, we show that these rules can be used to characterize when a collection of quarnets, one for each 4-element subset of X, can all be simultaneously displayed by a level-1 network with leaf-set X. The rules are an intriguing mixture of tree inference rules, and an inference rule for building up a cyclic ordering of X from orderings on subsets of X of size 4. This opens up several new directions of research for inferring phylogenetic networks from smaller ones, which could yield new algorithms for solving the supernetwork problem in phylogenetics

    Body mass index and annual increase of body mass index in long-term childhood cancer survivors; relationship to treatment

    Get PDF
    Evaluation of body mass index (BMI) at final height (FH) and annual BMI increase in adult childhood cancer survivors (CCS) after treatment with anthracyclines, platinum, and/or radiotherapy. BMI (weight/heightA(2)) was calculated retrospectively from diagnosis until FH. The prevalence of underweight (BMI < 18.5 kg/m(2)) and overweight (BMI a parts per thousand yenaEuro parts per thousand 25 kg/m(2))/obesity (BMI a parts per thousand yenaEuro parts per thousand 30 kg/m(2)) at FH was compared with age-matched controls. The association between underweight/overweight at FH and treatment was assessed by multivariate logistic regression. Annual BMI increase after treatment was assessed by multilevel analysis. Analyses were adjusted for age and underweight/overweight at diagnosis, and age at FH. At FH the prevalence of overweight had not increased, while CCS experienced more underweight as compared to controls (14% vs. 4%, P < 0.001). Overweight at FH was associated with cranial/craniospinal radiotherapy (CRT; OR, 2.23; 95% CI, 1.17-4.26) and underweight at FH with anthracyclines > 300 mg/m(2) (OR, 2.84; 95% CI, 1.33-6.06). Annual BMI increase was +0.47 (0.34-0.60) kg/m(2)/year. In CCS, the annual BMI increase was greater in those with CRT a parts per thousand yenaEuro parts per thousand 30 Gy as compared with those with less or no CRT (+0.15 kg/m(2)/year [0.04-0.25 kg/m(2)/year], P = 0.008) and smaller in those with a higher cumulative anthracycline dose (-0.03 kg/m(2)/year [-0.05 to -0.0005 kg/m(2)/year] per 100 mg/m(2), P = 0.046). After treatment with anthracyclines, platinum, and/or radiotherapy, CRT-treated survivors have more overweight at FH, and a greater annual BMI increase, while anthracycline-treated survivors have more underweight at FH and a lower annual BMI increase

    Lead Exposure: A Contributing Cause of the Current Breast Cancer Epidemic in Nigerian Women

    Get PDF
    Breast cancer incidence in Nigerian women has significantly increased during the past three decades in parallel with the rapid industrialization of that country. This suggested that the associated widespread contamination of the soil and of the water supplies by lead (Pb) and other industrial metals was a major contributing cause. Because of its many domestic, industrial, and automotive uses, Pb is of particular concern as it has been shown to promote the development of mammary tumors in murine mammary tumor virus-infected female C3H mice at levels as low of 0.5 ppm Pb in the drinking water. Lead belongs to the group of selenium-antagonistic elements that interact with selenium (Se), abolishing its anti-carcinogenic effect. Lead on chronic, low-level exposure in addition also accelerates tumor growth rates. Higher levels of Pb were found in blood and head hair samples of newly diagnosed patients with breast cancer, all with infiltrating ductal carcinoma, the most common form of breast cancer in Nigeria, seen at Obafemi Awolowo University, than in cancer-free controls from the same area. Evidence for interactions between Pb and Se was obtained from blood, hair, and tumor biopsy tissue analyses. Furthermore, the Pb levels in hair samples of the patients were directly correlated with the volumes of their tumors, in accord with the tumor growth-promoting effects of Pb. Conversely, Se levels in hair and blood were inversely correlated with the tumor volumes, consistent with the anti-proliferative effects of Se. Several other elements, e.g., Cd, Hg, Cr, Sn, and As, were detected in the scalp hair of the patients and the controls, although at significantly lower levels than those of Pb. However, correlation calculations revealed them also to interact with Se, suggesting that only a fraction of the Se in organs and tissues is actually present in bioactive forms. In metal-exposed subjects, a state of latent Se deficiency may exist, resulting in depressed immune functions and increased cancer susceptibility. Evidence is presented to show that Pb and other metals also interact with iodine, another vitally important essential trace element believed to protect against breast cancer development. Public health programs aiming at lowering the breast cancer risk of Nigerian women thus will have to include effective measures to protect the population from exposures to Pb and other industrial metals that are presently contaminating the environment and the water supplies

    Split-based computation of majority-rule supertrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supertree methods combine overlapping input trees into a larger supertree. Here, I consider split-based supertree methods that first extract the split information of the input trees and subsequently combine this split information into a phylogeny. Well known split-based supertree methods are matrix representation with parsimony and matrix representation with compatibility. Combining input trees on the same taxon set, as in the consensus setting, is a well-studied task and it is thus desirable to generalize consensus methods to supertree methods.</p> <p>Results</p> <p>Here, three variants of majority-rule (MR) supertrees that generalize majority-rule consensus trees are investigated. I provide simple formulas for computing the respective score for bifurcating input- and supertrees. These score computations, together with a heuristic tree search minmizing the scores, were implemented in the python program PluMiST (Plus- and Minus SuperTrees) available from <url>http://www.cibiv.at/software/plumist</url>. The different MR methods were tested by simulation and on real data sets. The search heuristic was successful in combining compatible input trees. When combining incompatible input trees, especially one variant, MR(-) supertrees, performed well.</p> <p>Conclusions</p> <p>The presented framework allows for an efficient score computation of three majority-rule supertree variants and input trees. I combined the score computation with a heuristic search over the supertree space. The implementation was tested by simulation and on real data sets and showed promising results. Especially the MR(-) variant seems to be a reasonable score for supertree reconstruction. Generalizing these computations to multifurcating trees is an open problem, which may be tackled using this framework.</p

    Processes and factors involved in decisions regarding return of incidental genomic findings in research

    Get PDF
    Purpose: Studies have begun exploring whether researchers should return incidental findings in genomic studies, and if so, which findings should be returned; however, how researchers make these decisions—the processes and factors involved—has remained largely unexplored. Methods: We interviewed 28 genomics researchers in-depth about their experiences and views concerning the return of incidental findings. Results: Researchers often struggle with questions concerning which incidental findings to return and how to make those decisions. Multiple factors shape their views, including information about the gene variant (e.g., pathogenicity and disease characteristics), concerns about participants’ well-being and researcher responsibility, and input from external entities. Researchers weigh the evidence, yet they face conflicting pressures, with relevant data frequently being unavailable. Researchers vary in who they believe should decide: participants, principal investigators, institutional review boards, and/or professional organizations. Contextual factors can influence these decisions, including policies governing return of results by institutions and biobanks and the study design. Researchers vary in desires for: guidance from institutions and professional organizations, changes to current institutional processes, and community-wide genetics education. Conclusion: These data, the first to examine the processes by which researchers make decisions regarding the return of genetic incidental findings, highlight several complexities involved and have important implications for future genetics research, policy, and examinations of these issues

    Association of Researcher Characteristics with Views on Return of Incidental Findings from Genomic Research

    Get PDF
    Whole exome/ genome sequencing (WES/WGS) is now commonly used in research and is increasingly used in clinical care to identify the genetic basis of rare and unknown diseases. The management of incidental findings (IFs) generated through these analyses is debated within the research community. To examine how views regarding genomic research IFs are associated with researcher characteristics and experiences, we surveyed genetic professionals and assessed the effect of professional background and experience on their opinions. Researchers who did not have clinical training, provide clinical care to research participants, or have prior experience returning research results were in general more inclined to offer return of IFs than their colleagues with these characteristics. Understanding this will be important to fully appreciate the impact that policies on return of genetic IFs could have on participants, researchers, and genomic research

    A single dividing cell population with imbalanced fate drives oesophageal tumour growth.

    Get PDF
    Understanding the cellular mechanisms of tumour growth is key for designing rational anticancer treatment. Here we used genetic lineage tracing to quantify cell behaviour during neoplastic transformation in a model of oesophageal carcinogenesis. We found that cell behaviour was convergent across premalignant tumours, which contained a single proliferating cell population. The rate of cell division was not significantly different in the lesions and the surrounding epithelium. However, dividing tumour cells had a uniform, small bias in cell fate so that, on average, slightly more dividing than non-dividing daughter cells were generated at each round of cell division. In invasive cancers induced by Kras(G12D) expression, dividing cell fate became more strongly biased towards producing dividing over non-dividing cells in a subset of clones. These observations argue that agents that restore the balance of cell fate may prove effective in checking tumour growth, whereas those targeting cycling cells may show little selectivity.Cancer Research UK (Grant ID: C609/A17257), Medical Research Council (Grant-in-Aid), DFG (Research Fellowship), Engineering and Physical Sciences Research Council (Critical Mass Grant), Wellcome Trust (Grant ID: 098357/Z/12/Z)This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ncb340
    corecore